Handle便攜式葉綠素熒光儀測定儀光合作用機理
光合作用的是能量及物質的轉化過程,首先由葉綠素將光能轉化成電能,經電子傳遞產生ATP和NADPH形式的不穩(wěn)定化學能,zui終轉化成穩(wěn)定的化學能儲存在糖類化合物中。
光反應:吸收光能,合成一些如ATP、NADPH等高能物質,用以維持細胞生長;
暗反應:利用ATP、NADPH固定二氧化碳,生成一些列碳水化合物 葉綠素熒光動力學包含著光合作用過程的重要信息,如光能的吸收和轉化。能量的傳遞與分配、反應中心的狀態(tài),過剩能量的耗散以及反映光合作用的光抑制和光破壞。應用葉綠素熒光可以對植物材料進行原位、無損傷的檢測,且操作步驟簡單。所以葉綠素熒光越來越受到人們的青睞,在光合生理和逆境生理等研究領域有著廣泛的應用。
Handle便攜式葉綠素熒光儀測定儀技術研究
陸地和水體雙用型設計,真正實現一機兩用
既可以單探頭便攜式測量,又可以多探頭長期連續(xù)自動測量
“ 快門”式熒光探頭可自動旋轉,隨時測量F0,并計算NPQ
直接測量?F/Fm’和Fv/Fm等來評價光合作用效率
利用遠紅光激發(fā)PS1電子
可以利用光化光進行快速光響應曲線測量,光誘導曲線或者客戶自定義的輻射處理
數據采集器與電源分離設計,能夠同時進行一個或者多個傳感器操作
軟件界面友好,可以選擇自帶程序或者自定義程序
可以利用程序自動完成72小時的自動測量
全防水設計,316不銹鋼鑄件,耐侵蝕
可以測量溫度、PAR(余弦矯正傳感器)
葉綠素熒光技術廣泛應用于植物光合作用效率、植物逆境脅迫、育種篩選和植物健康評價等方面的研究,被稱為植物光合作用研究無損傷的探針。水陸兩用自動熒光測量系統(tǒng)由澳大利亞悉尼大學的Runcie博士帶領團隊設計;采用*的“快門”式熒光技術,在測量時系統(tǒng)按照預設程序自動的旋轉熒光探頭到葉片表面,而在測量間期探頭自動旋轉到葉片側面,從而既避免了人為干擾,又保證了測量葉片始終處于自然狀態(tài)。系統(tǒng)既可以在陸地使用,也可以在各種水體中使用;既可以連接多達8個熒光探頭實現多點長期無人值守的連續(xù)測量,又可以拆分為單探頭的便攜式熒光儀從而實現調查式測量。
葉綠素熒光產生的原理
葉片是進行光合作用的主要器官,葉綠體是進行光合作用的主要細胞器。葉綠體是由葉綠體膜包裹起來的組織,膜內主要含有基質、基粒、類囊體。葉綠體的光合色素主要集中在基粒之中,光能轉換為化學能的主要過程是在基粒中進行的。
在高等植物體內含有光合色素包括葉綠素和類胡蘿卜素兩種,一般情況下以3:1的比例存在于類囊體的膜中。葉綠素分為葉綠素a和葉綠素b,類胡蘿卜素分為胡蘿卜素和葉黃素。
葉綠素不溶于水,而溶于有機溶劑。從化學性質講,葉綠素是葉綠酸的產物,葉綠酸的兩個羥基分別被甲醇和葉綠醇酯化而得到的,對光、熱、酸敏感,能發(fā)生皂化反應,性質不穩(wěn)定。
光合作用是高等植物從外界環(huán)境獲取能量的重要途徑,是高等植物進行生命活動的基礎。由綠色植物發(fā)射的葉綠素熒光以一種復雜的方式表達光合作用活性和行為。當光子照射綠色植物的葉片時,光能在葉片的分配有反射、透射和吸收等三種主要的去激途徑。葉綠素分子吸收的光能除了大部分進行光化學反應外,少部分會以熱耗散和熒光的方式釋放出來。